Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thin sputter deposited gold films on In2O3:Sn, SnO2:In, TiO2 and glass: Optical, electrical and structural effects

Identifieur interne : 000310 ( Main/Repository ); précédent : 000309; suivant : 000311

Thin sputter deposited gold films on In2O3:Sn, SnO2:In, TiO2 and glass: Optical, electrical and structural effects

Auteurs : RBID : Pascal:13-0337891

Descripteurs français

English descriptors

Abstract

Thin gold films are promising transparent conductors with many actual and potential uses in "green" technologies, transparent electronics, etc. These applications require different substrate materials, and hence it is important to understand the role of the substrate on Au thin film growth. Such effects have been studied in this work wherein Au films-ranging from island structures, via large scale coalescence into meandering metal networks, to thin homogenous layers-were deposited by DC magnetron sputtering onto glass substrates and In2I3:Sn (ITO), SnI2:In and TiO2 base layers backed by glass. Optical, electrical and structural properties were recorded for films deposited onto unheated substrates. We found distinct and characteristic differences in Au growth on the various backings. Thus ITO and SnO2:In base layers yielded gold films with island features remaining to larger thicknesses than for deposition directly onto glass, and the sheet resistance was lower for gold deposition onto SnO2:In and ITO only when the gold films were less than ∼5 nm in thickness. Our results highlight the complexity of substrates' influence on thin film formation.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0337891

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Thin sputter deposited gold films on In
<sub>2</sub>
O3:Sn, SnO
<sub>2</sub>
:In, TiO
<sub>2</sub>
and glass: Optical, electrical and structural effects</title>
<author>
<name sortKey="Lansaker, P C" uniqKey="Lansaker P">P. C. Lansaker</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box 534</s1>
<s2>751 21 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>751 21 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Petersson, P" uniqKey="Petersson P">P. Petersson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Tandem Laboratory, Uppsala University, P.O. Box 533</s1>
<s2>751 21 Uppsala</s2>
<s3>SWE</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>751 21 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niklasson, G A" uniqKey="Niklasson G">G. A. Niklasson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box 534</s1>
<s2>751 21 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>751 21 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Granqvist, C G" uniqKey="Granqvist C">C. G. Granqvist</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box 534</s1>
<s2>751 21 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>751 21 Uppsala</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0337891</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0337891 INIST</idno>
<idno type="RBID">Pascal:13-0337891</idno>
<idno type="wicri:Area/Main/Corpus">000587</idno>
<idno type="wicri:Area/Main/Repository">000310</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cathode sputtering</term>
<term>Conducting materials</term>
<term>Crystal growth</term>
<term>Design for environment</term>
<term>Direct current</term>
<term>Electrical characteristic</term>
<term>Electrical properties</term>
<term>Film formation</term>
<term>Film growth</term>
<term>Glass</term>
<term>Gold</term>
<term>Green electronics</term>
<term>Indium oxide</term>
<term>Island structure</term>
<term>Large scale</term>
<term>Multilayer coating</term>
<term>Nanostructures</term>
<term>Optical properties</term>
<term>Sheet resistivity</term>
<term>Sputter deposition</term>
<term>Thickness</term>
<term>Thin films</term>
<term>Tin additions</term>
<term>Tin oxide</term>
<term>Titanium oxide</term>
<term>Transparent material</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Addition étain</term>
<term>Conception pour environnement</term>
<term>Croissance film</term>
<term>Croissance cristalline</term>
<term>Structure îlot</term>
<term>Echelle grande</term>
<term>Courant continu</term>
<term>Pulvérisation cathodique</term>
<term>Caractéristique électrique</term>
<term>Propriété électrique</term>
<term>Revêtement multicouche</term>
<term>Epaisseur</term>
<term>Résistivité couche</term>
<term>Formation film</term>
<term>Dépôt pulvérisation</term>
<term>Propriété optique</term>
<term>Nanostructure</term>
<term>Or</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Oxyde de titane</term>
<term>Verre</term>
<term>Couche mince</term>
<term>Matériau conducteur</term>
<term>Matériau transparent</term>
<term>8115C</term>
<term>SnO2</term>
<term>TiO2</term>
<term>ITO</term>
<term>Electronique verte</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Or</term>
<term>Verre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Thin gold films are promising transparent conductors with many actual and potential uses in "green" technologies, transparent electronics, etc. These applications require different substrate materials, and hence it is important to understand the role of the substrate on Au thin film growth. Such effects have been studied in this work wherein Au films-ranging from island structures, via large scale coalescence into meandering metal networks, to thin homogenous layers-were deposited by DC magnetron sputtering onto glass substrates and In
<sub>2</sub>
I
<sub>3</sub>
:Sn (ITO), SnI
<sub>2</sub>
:In and TiO
<sub>2</sub>
base layers backed by glass. Optical, electrical and structural properties were recorded for films deposited onto unheated substrates. We found distinct and characteristic differences in Au growth on the various backings. Thus ITO and SnO
<sub>2</sub>
:In base layers yielded gold films with island features remaining to larger thicknesses than for deposition directly onto glass, and the sheet resistance was lower for gold deposition onto SnO
<sub>2</sub>
:In and ITO only when the gold films were less than ∼5 nm in thickness. Our results highlight the complexity of substrates' influence on thin film formation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Thin sputter deposited gold films on In
<sub>2</sub>
O3:Sn, SnO
<sub>2</sub>
:In, TiO
<sub>2</sub>
and glass: Optical, electrical and structural effects</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LANSAKER (P. C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PETERSSON (P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NIKLASSON (G. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GRANQVIST (C. G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box 534</s1>
<s2>751 21 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Tandem Laboratory, Uppsala University, P.O. Box 533</s1>
<s2>751 21 Uppsala</s2>
<s3>SWE</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>462-470</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000501971110700</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>144 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0337891</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Thin gold films are promising transparent conductors with many actual and potential uses in "green" technologies, transparent electronics, etc. These applications require different substrate materials, and hence it is important to understand the role of the substrate on Au thin film growth. Such effects have been studied in this work wherein Au films-ranging from island structures, via large scale coalescence into meandering metal networks, to thin homogenous layers-were deposited by DC magnetron sputtering onto glass substrates and In
<sub>2</sub>
I
<sub>3</sub>
:Sn (ITO), SnI
<sub>2</sub>
:In and TiO
<sub>2</sub>
base layers backed by glass. Optical, electrical and structural properties were recorded for films deposited onto unheated substrates. We found distinct and characteristic differences in Au growth on the various backings. Thus ITO and SnO
<sub>2</sub>
:In base layers yielded gold films with island features remaining to larger thicknesses than for deposition directly onto glass, and the sheet resistance was lower for gold deposition onto SnO
<sub>2</sub>
:In and ITO only when the gold films were less than ∼5 nm in thickness. Our results highlight the complexity of substrates' influence on thin film formation.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Addition étain</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Tin additions</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Conception pour environnement</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Design for environment</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Croissance film</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Film growth</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Croissance cristalline</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Crystal growth</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Structure îlot</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Island structure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Echelle grande</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Large scale</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Escala grande</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Courant continu</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Direct current</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Pulvérisation cathodique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Cathode sputtering</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Revêtement multicouche</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Multilayer coating</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Revestimiento multicapa</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Epaisseur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Thickness</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Résistivité couche</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Sheet resistivity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Formation film</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Film formation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Formación película</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Sputter deposition</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Or</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Gold</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Verre</s0>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Glass</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Matériau conducteur</s0>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Conducting materials</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Matériau transparent</s0>
<s5>29</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Transparent material</s0>
<s5>29</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Material transparente</s0>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>SnO2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>TiO2</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Electronique verte</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Green electronics</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>322</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000310 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000310 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0337891
   |texte=   Thin sputter deposited gold films on In2O3:Sn, SnO2:In, TiO2 and glass: Optical, electrical and structural effects
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024